
Microstates of position and momentum result in gravitational entropy

Christopher N. Watsona)

1300 E. 86th Street, Suite 14, Indianapolis, Indiana 46240, USA

(Received 16 July 2022; accepted 13 September 2022; published online 29 September 2022)

Abstract: Measurements of a black hole’s position are limited in four different ways: Absorption

of short-wavelength photons by the black hole, gravitational lensing’s interference with geometric

diffraction, gravitational redshift decreasing the resolution of interactions close to the event hori-

zon, and the relatively long wavelength of Hawking radiation. These limitations mean that a black

hole cannot be localized more precisely than its Schwarzschild radius. Limitations on measuring

mass and velocity mean that the position and momentum of a black hole cannot be simultaneously

known more precisely than 2 h rs/lP, a value more restrictive than the Heisenberg uncertainty

principle. Hidden information about a black hole’s position and momentum results in many possi-

ble microstates that are indistinguishable to an observer. One way to interpret the physical meaning

of Bekenstein–Hawking entropy is as a measure of the number of these microstates. This interpre-

tation allows entropy to be generalized to objects in any gravitational field, because gravitational

redshift increases uncertainty about position and momentum for objects in all gravitational fields,

not just those of black holes. VC 2022 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-35.4.322]

R�esum�e: Les mesures de la position d’un trou noir sont finies par quatre limitations diff�erentes:

L’absorption des photons �a faible longueur d’onde par le trou noir, l’interf�erence de la lentille

gravitationnelle avec la diffraction g�eom�etrique, le d�ecalage vers le rouge gravitationnel diminuant

la r�esolution des interactions proches de l’horizon des �ev�enements, et la relativement grande

d’onde longue du rayonnement de Hawking. Ces limitations d�enotent qu’un trou noir ne peut pas

être localis�e plus pr�ecis�ement que son rayon de Schwarzschild. Les limitations sur la mesure de la

masse et de la vitesse signifient que la position et le moment d’un trou noir ne peuvent pas être

connus simultan�ement plus pr�ecis�ement que 2 h rs/lP, une valeur plus restrictive que le principe

d’incertitude de Heisenberg. Les informations cach�ees sur la position et le moment d’un trou noir

se traduisent par de nombreux micro-�etats possibles qui sont indiscernables pour un observateur.

Une façon d’interpr�eter la signification physique de l’entropie de Bekenstein-Hawking consiste �a
mesurer le nombre de ces micro-�etats. Cette interpr�etation permet de g�en�eraliser l’entropie aux

objets dans n’importe quel champ gravitationnel, vu que le d�ecalage vers le rouge gravitationnel

augmente l’incertitude sur la position et le moment des objets dans tous les champs gravitationnels,

pas seulement ceux des trous noirs.
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I. INTRODUCTION

Bekenstein and Hawking established that black holes

have entropy, but there remains uncertainty about the physi-

cal meaning of this entropy.1 One possibility is that black

hole entropy represents hidden information about the posi-

tion of segments of the black hole horizon.2 Uncertainty in

the position of segments of the black hole will also result in

uncertainty about the momentum of the black hole, as posi-

tion must be measured twice in order to calculate velocity.

This paper explores the possibility of black hole entropy

being related to this hidden information about position and

momentum. It describes the constant relationship between

the peak luminosity wavelength of Hawking radiation and

Schwarzschild radius. It proposes a new uncertainty princi-

ple that describes the limits on simultaneously measuring the

position and momentum of a black hole and describes how

entropy can be generalized to objects in any gravitational

field.

II. BLACK HOLES AND UNCERTAINTY

The Heisenberg uncertainty principle limits how much

can be known simultaneously about the momentum and posi-

tion of any object, including black holes. The uncertainty

position can be written as3

m D v D x> h: (1)

According to this inequality, as the mass of the black

hole increases, it’s position and velocity can be known with

greater and greater precision. For black holes, Eq. (1) is not

accurate because it neglects the effects of gravity. As a gravi-

tational field becomes stronger, there is greater uncertainty

in a black hole’s position and velocity. The increaseda)chriswatsonmd@gmail.com
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uncertainty applies to any method of measurement, including

measuring the black hole directly with a photon, indirectly

by detecting a particle near the event horizon, or passively

be detecting Hawking radiation.

First, consider the limitations on directly detecting a

black hole with a photon. Any photon with a wavelength

equal to or less than the Schwarzschild radius that directly

interacts with the black hole will be absorbed. Photons with

a wavelength longer than black hole’s radius will diffract,

but the resolution of measurements made with these photons

will be larger than the Schwarzschild radius.3

In classical optics, the Arago spot, a bright spot directly

behind a spherical object due to Fresnel diffraction, has been

proposed as a precise way to measure position with long-

wavelength light.4 This technique cannot be used for preci-

sion measurements of black holes because gravitational lens-

ing blurs the geometric scattering pattern.5

The black hole’s location could also be determined indi-

rectly, by measuring the position of another particle nearby.

This method is also limited by the black hole’s gravitational

field. In empty space, the smallest length that can be mea-

sured is limited by the size of the smallest possible black

hole. Distances cannot be measured to less than about one

Planck length because a photon energetic enough to do this

has about a Planck mass of energy, enough energy to create

its own black hole.6 Near a black hole the smallest distance

that can be measured is even larger than the Planck length,

because a photon with about a Planck mass of energy near

the object will be gravitationally redshifted by the time it

reaches a distant observer. The following equation can be

used to calculate gravitational redshift:

k1
ke
¼ 1� rs

Re

� ��1
2

: (2)

Using Eq. (2), a photon from an interaction one Planck

length from a Planck mass black hole will be redshifted to

�1.7 times its original wavelength. This redshift leads to a

loss of spatial resolution. In the above example, a

�1.7� loss of resolution is less than the Schwarzschild

radius of 2 Planck lengths, but a single interaction is not

enough to precisely locate the black hole on the x-axis.

Instead, it only defines where the black hole is not. For the

black hole to be precisely located in this fashion would

require interactions to be recorded on either side of the event

horizon, which would make the uncertainty greater than the

Schwarzschild radius.

Finally, one could try to locate the black hole passively,

by detecting Hawking radiation. The Wein displacement law

gives the wavelength of peak radiance for a black body

depending on temperature. The Wein displacement is not the

minimum wavelength of the thermal radiation, but given the

short half-life of small black holes, and the low luminosity of

large black holes, it is a reasonable approximation. The Wein

displacement law is given by the following equation, where b

is Wein’s displacement constant (�2.987� 10�3 m K)

k ¼ b

T
: (3)

The temperature of Hawking radiation is given as7

T ¼ �hc3

8pGkBM
� 1:2� 1023 K

M
: (4)

Substituting Eq. (4) for the temperature in Eq. (3) gives

the following equation for peak luminosity wavelength

depending on black hole mass (M)

k � 2:4� 10�26 m kg�1 M: (5)

The Schwarzschild radius is given by the following

equation:

rs ¼
2GM

c2
� 1:5� 10�27 m kg�1 M: (6)

Since both the peak luminosity wavelength and the

Schwarzschild radius are directly proportional to the black

hole’s mass, there is a constant relationship between peak

luminosity wavelength and Schwarzschild wavelength for

any size black hole, shown in Eq. (7)

k
rs
� 2:4 � 10�26 m kg�1 M

1:5 � 10�27 m kg�1 M
� 16: (7)

Equation (7) shows that for any size Schwarzschild black

hole, the peak luminosity wavelength is about 16 times the

Schwarzschild radius. Since position cannot be resolved to

less than the wavelength of light used to do a measurement,

the peak luminosity wavelength of Hawking radiation cannot

be used to locate the black hole to less than about 16 times

the Schwarzschild radius of the black hole.

As a result of these limitations, the position of a black

hole cannot be measured to less than the Schwarzschild

radius. Since calculating velocity requires two measurements

of position, the limitation on measuring position will also

affect uncertainty in velocity. Assuming that the measure-

ments have to be separated by at least one unit of Planck

time, the uncertainty in velocity would be twice the

Schwarzschild radius (the combination of two measurements

has twice the range of a single measurement) divided by the

Planck time

Dv >
2rs

tP
¼ 2rSc

lp
: (8)

The mass of a black hole could be measured by its dif-

fraction of light with a wavelength longer than the Schwarzs-

child radius. This method would be limited in accuracy to

the mass equivalent of the energy of a photon with the

Schwarzschild radius, because such a photon would be

absorbed by the black hole. Combining uncertainty in mass,

velocity, and position gives Eq. (9), an uncertainty principle

for black holes

m D v D x >
h

rSc

� �
2rSc

lp

� �
rs ¼ 2h

rs

lp
: (9)
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The uncertainty in Eq. (9) results in multiple possible

arrangements of position and momentum for the black hole

that are indistinguishable to an observer.

III. GRAVITATIONAL ENTROPY

To see how uncertainty in the black hole’s position and

momentum results in entropy, consider a semiclassical toy

model in which the mass of a black hole is known, and its

shape is assumed to be free from quantum fluctuations. In

this model, a Planck mass black hole with a Schwarzschild

radius of 2 Planck lengths would have two possible positions

on the x-axis that are indistinguishable to an observer. These

positions can be represented by 0 and 1. The three spatial

axes can be defined by (x, y, z), and the number of possible

positions for this black hole is given by the following set:

0; 0; 0ð Þ 0; 0; 1ð Þ 0; 1; 0ð Þ 0; 1; 1ð Þ 1; 0; 0ð Þ 1; 0; 1ð Þ
1; 1; 0ð Þ 1; 1; 1ð Þ:

These eight positions correspond to r3 possible micro-

states of position, a relationship that holds true for any size

black hole. If position is measured a second time, another set

of r3 positions is possible. Since each second position gives a

unique velocity, when compared to a single possibility from

the first set, the total number of microstates in this model is

r6. These microstates represent an indistinguishable set of

possible states that increases with the size and entropy of a

black hole. Therefore, microstates of position and momen-

tum are a candidate to explain Bekenstein–Hawking entropy.

If black hole entropy can be explained by microstates of

position and momentum, then the concept of entropy can be

expanded to anything within the black hole’s gravitational

field. Entropy applies to any object in the field, not just the

black hole itself, because anything in the field will have limi-

tations on the measurement of position and momentum due

to gravitational redshift. Since gravity falls off with an

inverse square, gravitational entropy can be approximated

based on the black hole’s entropy and the inverse square of

the distance, as

SG � SBH

r

rs

� ��2

: (10)

Indeed, gravitational entropy can be generalized to for

objects within any gravitational fields, not just those from

black holes, because all gravitational fields hide information

with gravitational redshift. Extending this concept further,

systems of gravitational objects, like stars, would have more

gravitational entropy than the sum of the individual stars’

entropy because each star’s gravitational field would

increase the number of microstates of position and momen-

tum for the other stars in the system, not just for an observer.

IV. DISCUSSION AND CONCLUSIONS

This paper provides a limit on how well the position and

momentum of a black hole can be measured. It also provides

a rationale for how this uncertainty could result in black hole

entropy, and how entropy can be generalized to any object

within a gravitational field. Further work will be needed to

show if the entropy predicted matches with the expected

entropy from black hole thermodynamics, and to define the

entropy of objects in gravitational fields.

The number of microstates predicted by the above toy

model was the radius in Planck units to the sixth power.

Although this represents a large number of possibilities, it

does not increase as quickly the logarithmic functions typi-

cally associated with entropy. Some of this difference may

be due to the simplified features of the model. Bianchi was

able to reproduce the Bekenstein–Hawking expression by

analyzing quantum uncertainty in the positions of individual

segments of the event horizon.2 A similar approach account-

ing for each segment of the black hole horizon may improve

the predictions of the above model.

Both Bianchi’s model and others have more closely

matched Bekenstein–Hawking entropy than the toy model

described above.2,8 That said, microstates of position and

momentum are worth further study because they closely

match the definition of entropy used in statistical mechanics,

and because they extend the concept of entropy to any object

within a gravitational field. This extension of entropy may

shed light on unexplained phenomena.

The entropy scale factor (ESF) is a recently published

theory that proposes that entropy causes gravity, instead of

the energy and momentum of general relativity.9,10 Since the

stars and black holes in a galaxy will increase microstates of

position and momentum for each other as well as for an out-

side observer, the observer will calculate more entropy for

the galaxy a whole than for the sum of the constituent gravi-

tational bodies. In the ESF, this extra entropy will cause

extra gravity, compared to what is predicted by the mass of

the gravitational bodies, which may help explain phenomena

attributed to dark matter.

Tests of general relativity are typically based on simple

systems. Tests of binary pulsars, for example, measure how

the two pulsars affect each other, not how the system of two

stars would affect a third object some distance away.11 Since

these tests do not assess how the two pulsars’ fields combine

to affect a third object, they have not ruled out the possibility

that the fields combine differently than predicted by general

relativity. This means that a theory of gravity based on

entropy has the possibility of making new predictions for

systems while not violating tests of general relativity.

Other work on gravity’s influence on the fundamental

limit of measuring distance has shown how the energy of the

measuring photon would warp spacetime.12 The analysis in

this paper ignores the energy of the photon to focus on the

effects of the black hole itself. Future research on the interac-

tion between both of these sources of uncertainty may further

illuminate measurements of minimal distances.

Additional work is needed to explore the limitations of

measuring black holes, the origin of black hole entropy, and

expanding entropy to objects in gravitational fields. The

framework provided above may enable further research into

these areas.
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